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VR-PVT AlN

Software for Modeling of Long-Term Growth of 

Bulk AlN Crystals by Physical Vapor Transport



Virtual Reactor editions:

Physical Vapor Transport

• For growth of SiC: VR-PVT SiC

• For growth of AlN: VR-PVT AlN

Hydride Vapor Phase Epitaxy: HEpiGaNS

• For growth of GaN

• For growth of AlN and AlGaN

Chemical Vapor Deposition

• For growth of SiC: VR-CVD SiC

STR Virtual Reactor (VR) is a family of stand-alone 2D software tools

designed for the simulation of long-term growth of bulk crystals and epilayers

from vapor
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• VR-PVT AlN is specially designed for the modeling of long-term AlN bulk crystal growth by

the seeded sublimation technique

• Account of non-steady character of the growth process (crystal enlargement, heater or

crucible movement, etc.)

• Modeling of the heat transfer in the overall growth system

• Modeling of multicomponent flow

• Modeling of diffusion of the reactive species in the growth chamber

• Advanced models of heterogeneous chemical reactions

• Prediction of material losses

• Estimation of the internal pressure inside the crucible

• Analysis of dislocation evolution

• Analysis of heat and mass transport in the porous source

VR-PVT AlN — Key Features
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• Heat transfer mechanisms

– Heat conduction in anisotropic media

– Radiation

– Convection

• RF heating with non-uniform heat distribution in the crucible by a single coil or

two independent coils

• Heat transfer in porous source

• Heat transfer in thermal insulation

• Temperature fitting at a reference point

Global Heat Transfer in an AlN Growth System

Heat Transfer in an AlN Growth System



Virtual Reactor employs an advanced model of the heat transfer in porous media

Key Features

• Heat conduction through the granule contact spots 

• Radiation transport though the pores 

• Radiation transport through the granules 

E.L. Kitanin et al., Mat. Sci. Engng. B55 (1998) 174

Simulation of the Heat Transfer in Porous AlN Source

Heat Transfer in an AlN Growth System



M.V. Bogdanov et al, 

Mat. Res. Soc. Proc. 743

(2003) L3.33

Temperature Distribution in an AlN Growth System
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M.V. Bogdanov et al, 

Mat. Res. Soc. Proc. 743

(2003) L3.33

Temperature 

Distribution in the 

Crucible
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Use of the advanced models of species transport and heterogeneous processes
in the sublimation growth of bulk AlN crystals

Employment of the material database containing accurate data on materials
thermal conductivity

Modeling of Species Transport in AlN Crystal Growth

Species Transport
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• Multicomponent vapor flow

• Diffusion of reactive species

• Heterogeneous reactions on the 

seed and source surfaces 

• Stefan flow

• Mass exchange between the 

growth cell and the ambient

Mechanisms of Bulk AlN Crystal Growth

Growth Mechanisms



Works in a wide 

temperature range

Works in a wide 

range of pressure

Requires to 

build up kinetic 

model only for 

a limiting stage

QT-model

Allows one to 

take into account 

kinetic effects

Can be easy extended to 

alternative set of species and 

chemical reactions

VR employs the quasi-

thermodynamic model for the 

description of heterogeneous 

processes

S.Yu. Karpov et al., 

MRS Int. J. Nitr. Sem. Res. 4 (1999)

4

A.S.Segal et al,

J. Crystal Growth 211 (2000) 68

Quasi-Thermodynamic Approach

Model of the Surface Processes



Basic Assumptions

• Gaseous species: Al, N2

• Reaction: 2 Al + N2 = 2 AlN (solid)

• The atoms in the adsorption layer are nearly in thermodynamic equilibrium with

the crystal: atom incorporation and desorption rates are much higher than their

difference, i.e. the crystal growth rate

• Kinetics effects at the adsorption /desorption stages are accounted for by

sticking/evaporation coefficients of the species

Model of the Surface Processes



Species molar fluxes:
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Mass action law for the equilibrium pressures:
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Adsorption Kinetics on AlN Surfaces

Aluminum adsorption kinetics:

1=Alα

Nitrogen adsorption kinetics:
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S.Yu. Karpov et al.,  

Phys. Stat. Sol. (a) 188 (2001) 763.
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AlN Growth in the Nitrogen Atmosphere

Model of the Surface Processes: Validation



Experiments:

C.M. Balkas et al, 

Mat. Res. Sos. Symp. Proc. 449 (1997) 41. 
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AlN Growth in the Nitrogen Atmosphere

Solid circles: experimental data obtained

at ∆T = 70 K

Solid curves - computations accounting

for the mass exchange with the external

ambient for different ∆T:

• Squares: ∆T = 100 K

• Diamonds: ∆T = 70 K

• Triangles: ∆T = 30 K

Dashed curve: theoretical predictions of

the model for ∆T = 70 K
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Experimental data obtained by 

M. Spencer

Growth Rate Limitation by the N2 Adsorption Kinetics

Computed and experimental AlN growth

rates as a function of pressure at

2158°C and 2183°C. The clearance

between the source and seed and the

respective temperature difference are 4

mm and 4.5°C.
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S.Yu. Karpov et al.,

Phys. Stat. Sol. (a) 176 (1999) 435.

Growth Rate vs. Seed Temperature

Computed and experimental AlN growth 

rates as a function of the seed 

temperature.

Clearance d = 4 mm
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Circles: experiments

Lines: computations
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E.N. Mokhov et al,

Mat. Sci. Forum 433-436

(2003) 979

AlN Growth Rate at Different Growth Stages
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Model of the Surface Processes: Validation

Circles: experiments

Lines: computations

S.Yu. Karpov et al,

Mat. Sci. Forum 353-356 

(2001) 779

Experimental data by 

Yu.A. Vodakov et al.
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Experimental data by Yu.A. Vodakov et al.
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Comparison of 
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High pressure: P = 600 mbar

Flow Pattern and Species Distribution in 

the Growth Chamber

Modeling of Mass Transport



Modeling of Mass Transport

Medium pressure: P = 250 mbar

Flow Pattern and Species Distribution in 

the Growth Chamber



Modeling of Mass Transport

Very low pressure: P = 45 mbar

Flow Pattern and Species Distribution in 

the Growth Chamber



Simulation of Crystal Shape Evolution
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Start of the growth
Pressure = 600 mbar

Crystal Shape Evolution 



t = 5 h

Crystal Shape Evolution 



t = 10 h

Crystal Shape Evolution 



t = 20 h

Crystal Shape Evolution 



t = 30 h

Crystal Shape Evolution 



t = 40 h

Crystal Shape Evolution 



t = 50 h

Crystal Shape Evolution 



Species Transport in the Porous Source

Modeling of Species Mass Transport in AlN Porous Source



Processes Observed in the Porous Source 

during the Growth

• Complete evaporation of the hot zones

• Densification of the source in the cold zones along with the secondary

crystallization from the supersaturated vapor

• Directional gas flow through the porous source. In particular, this results in

modification of granule shapes due to their sublimation and secondary

crystallization of the reactive species

Modeling of Species Mass Transport in AlN Porous Source



Basic Concepts

• AlN source is considered as porous medium characterized by

– Local porosity

– Granule size

• Species transport in the source is modeled using the Darcy-Brinkman-Forchheimer

approach

• The account of the volumetric mass source due to chemical reactions on the 

surface of AlN granules

• Temporal variation of the porosity and granule size due to granule sublimation and 

recrystallization

Modeling of Species Mass Transport in AlN Porous Source



The continuity equations for the whole vapor:

Flow in the porous medium is described by the Darcy-Brinkman-Forchheimer law:

The porous medium permeability and inertial coefficient are 

found from the granule radius and porosity using Ergun’s 

relationship:
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Boundary Conditions on the Source-Gas Interface:

The gas velocity: +−
=

bb
VV
rr

+− =
bb

pp

+− ⋅=⋅
bb

nn
rr ττ

( ) ( ) −+ +=+
biinbiin JCVJCV ρρ

Pressure:

Viscous stress tensor:

Species:
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Temporal variation of the granule size:

Relationship between the porosity and the granule size: 

e ηε −= ,  where      is the reduced density defined asη 34

3 grr nη π=

The granule concentration assumed to be constant during the growth:
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Modeling of the Porous Source  Evolution 
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Initial porosity = 0.5
Start of the growth

Temperature distribution and the 

flow pattern 

in the source and gas chamber

Porosity distribution and 

the flow pattern 

in the source and gas chamber

Modeling of Species Mass Transport in AlN Porous Source



t = 2 h

Modeling of Species Mass Transport in AlN Porous Source

Initial porosity = 0.5

Temperature distribution and the 

flow pattern 

in the source and gas chamber

Porosity distribution and 

the flow pattern 

in the source and gas chamber



t = 5 h

Modeling of Species Mass Transport in AlN Porous Source

Initial porosity = 0.5

Temperature distribution and the 

flow pattern 

in the source and gas chamber

Porosity distribution and 

the flow pattern 

in the source and gas chamber



t = 10 h

Modeling of Species Mass Transport in AlN Porous Source

Initial porosity = 0.5

Temperature distribution and the 

flow pattern 

in the source and gas chamber

Porosity distribution and 

the flow pattern 

in the source and gas chamber



t = 20 h

Modeling of Species Mass Transport in AlN Porous Source

Initial porosity = 0.5

Temperature distribution and the 

flow pattern 

in the source and gas chamber

Porosity distribution and 

the flow pattern 

in the source and gas chamber



� Zone of active sublimation in the porous source is initially localized at the

hot area and moves into the source bulk while the hot zones completely

sublime

� Reduced porosity zones are formed in relatively cold regions

Main Results:

Modeling of Species Mass Transport in AlN Porous Source



• Finite-element analysis of the thermal elastic stress in AlN crystals

• Evaluation of the density of the dislocations gliding in the basal (0001) plane on the

assumption of a full stress relaxation due to plastic deformation (S.Yu. Karpov et al.,

J.Cryst. Growth 211 (2000) 347)

Software for Modeling of Long-Term Growth of Bulk AlN by PVT

Analysis of Thermal Elastic Stress and Dislocation 

Evolution. Basic Features



Stress Component)

rzσ(Magnitude of
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t = 0

Temperature

Applied Stress

Analysis of Thermal Elastic Stress
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t = 10

Temperature

Applied Stress

Analysis of Thermal Elastic Stress
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t = 30

Temperature

Applied Stress

Analysis of Thermal Elastic Stress



t = 50

Temperature

Applied Stress
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Analysis of Thermal Elastic Stress



Virtual Reactor predicts propagation of dislocations of II (prismatic) and of III (screw)

type frequently observed in the growing bulk crystal

I (0001) 1210

II {1010} 1210

III {1010} 0001

IV {1011} 1210

V {1011} 1123

VI {2112} 2113
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Analysis of Threading Dislocation Dynamics.

Principal Slip Systems in a Hexagonal Crystal
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Dislocation traces in bulk crystal growth

>< 1021}0110{

Dislocation density, cm-2

Wafer mapping

Analysis of Threading Dislocation Dynamics.

Prismatic Dislocations
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>< 0001}0110{

Dislocation traces in bulk crystal growth Wafer mapping

Dislocation density, cm-2

Analysis of Threading Dislocation Dynamics.

Screw Dislocations
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Some VR users in Europe 



Some VR users in South-East Asia

Prof. Hiroshi 

Amano

The Nobel 

Prize in 

Physics 

2014
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VR-PVT AlN™ is an effective tool for simulation of long-term sublimation growth of bulk AlN

crystals

Any questions concerning Virtual Reactor software tools can be sent to 

vr-support@str-soft.com

General presentation demonstrating capabilities of the Virtual Reactor software package and

presentations demonstrating other editions of Virtual Reactor family, such as

• VR-PVT SiC™

• HEpiGaNS™

• VR-CVD SiC™

are available upon request

Conclusions
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